Adenosine Adducts with First Row Transition Metal Perchlorates*

CHESTER M. MIKULSKI, ROBERT MINUTELLA, NANCY DE FRANCO, GUILLERMO BORGES, Jr.

Department of Chemistry and Physics, Beaver College, Glenside, Pa. 19038, U.S.A.

and NICHOLAS M. KARAYANNIS

Amoco Chemicals Co., P.O. Box 400, Naperville, Ill. 60566, U.S.A.

Received October 9, 1985

Abstract

Adducts of adenosine (ado) with 3d metal perchlorates were synthesized by refluxing mixtures of ligand and salt in ethanol-triethyl orthoformate. Metal(III) perchlorates formed adducts involving 2:3 metal to ado molar ratio (M = Cr, Fe), *i.e.*, M_2 - $(ado)_3(ClO_4)_6 \cdot 4H_2O$, whereas 1:1 adducts were produced by metal(II) perchlorates, as follows: $M(ado)(ClO_4)_2 \cdot 2H_2O$ (M = Mn, Co, Ni, Cu); and $M(ado)(ClO_4)_2$ (M = Fe, Zn). All the new complexes seem to be polymeric, involving a linear chainlike backbone with single ado bridges between adjacent metal ions in most cases, *i.e.*, $-(-M-ado-)-_n$. The coordination sphere of each metal ion is completed by terminal aqua, ado and, with the exception of the Cu^{2+} complex, $-OClO_3$ ligands, in the case of the hydrated new complexes. Ado would be binding through the N(1) and N(7) ring nitrogens, when functioning as bridging, bidentate. As regards the two water-free M(II) complexes (M = Fe, Zn), which are apparently distorted tetrahedral, the evidence available is interpreted in terms of the presence of tridentate bridging ado, binding through N(1), N(7)in the same fashion as above, and through one of the ribose hydroxyl oxygens, which form weaker bonds to M^{2+} ions located in a neighboring linear polymeric $-(-M-ado-)-_n$ unit; the coordination sphere in these complexes is completed by one $-OClO_3$ ligand.

Intrduction

Adenosine (ado; I) metal complexes have been the subject of numerous publications [2, 3]. Most intensively studied were complexes with Pt^{2+} and Pd^{2+} , ranging from simple adducts of the metal halides to complex species involving additional

ligands (e.g., aminoacids, NH_3 , ethylenediamine) or metal ions (e.g., K^*) [4-14]. Reported complexes of ado with other 4d and 5d metal ions include several MCl₃ (M = Ru, Rh, Ir) [15], MCl₂ (M = Cd, Hg) [16], Rh²⁺ acetate [13, 17] and lowvalent W and Rh carbonyl [18-20] adducts, complexes with methylmercury(II) [21] and oxomolybdenum(VI) [22] and the bis(pyridine)osmate(VI) ester of ado [23]. Among compounds of the main group elements, $SnCl_2$ [24] and organotin(IV) chloride [25] adducts, as well as diorganotin(IV) complexes with anionic adenosine [26] were reported. Regarding complexes of 3d metal ions with ado, there is relatively little information, especially as far as solid complexes synthesized are concerned. Thus, adducts with M^{2+} chlorides (M = Co, Ni, Cu, Zn) have been prepared [16], while these laboratories presented the preparations and some characterization data of 3d metal perchlorate ($M = Cr^{3+}$, Mn^{2+} , Fe^{2+} , Fe^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+}) adducts with ado in preliminary communications [1, 27]. Now our studies have been completed and are the subject of the present paper. Some additional solid 3d metal complexes with ado, including Co³⁺ [28, 29], Cu²⁺ [30] and Mn carbonyl [18] complexes, were previously reported, while numerous spectral and magnetic studies of the interaction of ado with 3d metal salts and complexes, as, for instance, with CuCl₂ [31] and Cu²⁺-glycylglycine [32], have also appeared.

Ado has four potential nitrogen binding sites, *i.e.*, the pyrimidine N(1) and N(3) and the imidazole

^{*}Presented in part at the 1984 Int. Chem. Congress of Pacific Basin Socs. (PAC CHEM '84), Honolulu, Hawaii, Dec. 1984, see ref. 1.

N(7) ring nitrogens, and the N(6) nitrogen of the exocyclic NH_2 group. Since N(9), which is the preferred binding site of adenine (adH) [33], is blocked by the ribose substituent in ado, N(7) becomes the primary binding site of the latter ligand when it is acting as terminal unidentate, with N(1) and N(7) being the most common binding sites of bridging bidentate ado [7, 13, 34-36]. This is substantiated by several crystal structures available for complexes with ligands analogous to ado, *i.e.*: 2'deoxyadenosine (dado) is unidentate N(7)-bonded in $[Co(dado)(acac)_2(NO_2)] \cdot 2H_2O$ (acac = acetylacetonato ligand) [37] (the corresponding ado complex has been also prepared [29]); 9-methyladenine (mad) acts as bridging N(1), N(7)-bonded in its 1:1 adducts with CoCl₂ [38] and ZnCl₂ [39], while adenine N(1)-oxide is bridging O(1), N(7)-bonded in [(adH--NO)HgCl₂]₂ [40]. Binding of ado through N(3) would be unlikely, owing to the steric hindrance introduced by the ribose substituent at N(9) [41]. On the other hand, use of the exocyclic N(6) nitrogen as binding site is rather uncommon for ado, but is apparently facilitated upon N(1)-oxidation of this compound [4]. In fact, whereas ado seems to be N(7)-bonded in its PtX_2 (X = Cl, Br) complexes, the corresponding adenosine N(1)-oxide complexes clearly involve ligand binding through N(6), probably due to chelation via O(1), N(6) [4]. It should be noted, in this connexion, that a recent crystal structure determination of a Cu²⁺ complex with doubly deprotonated adenine N(1)-oxide revealed chelation of the ligand through O(1), N(6) [42]. As regards the hydroxyl oxygens of the ribose fragment of ado (O(2'), O(3') and O(5'), they may enter in competition with nucleobase binding sites, especially in the absence of water [3]. Alkali or alkaline earth metal ions will often coordinate to the O(2'), O(3')chelating site of ribose, and several crystal structures reported established coordination of both or at least one of these oxygens in nucleotide complexes with Na^{*} [43], Rb⁺ [44], Ba²⁺ [45] or Cd²⁺ [46]. Cu²⁺ or Co³⁺ coordination to ribose oxygens of nucleosides or nucleotides has been observed in non-aqueous media [47] or at high pH (>10 or >8, respectively) [48, 49]. In several other studies, binding of ribose nucleoside oxygens either exclusively or concurrently with purine or pyrimidine binding sites was postulated as most compatible with the spectral and magnetic properties of Cu²⁺ [50, 51], Mn²⁺ [52], Fe^{2+} [53, 54] and Sn^{2+} [24] complexes. The O(2'), O(3') oxygens of ado are chelated to Os6+ in the bis-(pyridine)osmate(IV)-ado ester [23], while similar type of chelation appears to occur in several organotin(IV) complexes with nucleosides [26, 55]. Finally, the crystal structure determination of a polymeric Cu²⁺ complex with guanosine 2'-monophosphate revealed that each Cu^{2+} ion has a distorted [4+2]octahedral symmetry, and is coordinated to three different ligand molecules via two mutually transequatorial Cu-N(7) bonds and one axial Cu-O(5')longer bond; the coordination sphere is completed by three aqua ligands [56].

For adducts of the type herein reported, the adenine ring nitrogens of ado would be expected to function as primary binding sites, *i.e.*, N(1), N(7)for bridging bidentate and N(7) for terminal unidentate ado. Participation of ribose oxygens in coordination could arise by cross-linking between linear $-(-M-ado-)-_n$ polymeric units, involving single bridges of N(1), N(7)-bonded ado between adjacent metal ions. In our preliminary studies, we proposed that ado is exclusively coordinated through adenine ring nitrogens in all its hydrated metal perchlorate adducts isolated (M = Cr^{3+} , Mn^{2+} , Fe^{3+}) Co²⁺, Ni²⁺, Cu²⁺), but may also involve participation of ribose oxygens in coordination in the two waterfree adducts prepared (M = Fe^{2+} , Zn^{2+}) [1, 27]. Our completed studies tend to support these conclusions.

Experimental

The new metal complexes were prepared by refluxing 2:1 (for M^{2+}) or 3:1 (for M^{3+}) molar mixtures of ado and hydrated metal perchlorate in a 7:3 (v/v) mixture of ethanol-triethyl orthoformate

TABLE I. Analyses of ado Adducts with Metal Perchlorates

Complex	Color	Yield %	С%		Н%		N%		Metal	k	C1%	
			Calc.	Found								
$Cr_2(ado)_3(ClO_4)_6 \cdot 4H_2O$	ash gray	43.7	22.89	23.12	3.01	2.88	13.34	13.21	6.60	6.72	13.51	13.49
$Mn(ado)(ClO_4)_2 \cdot 2H_2O$	beige	16.8	21.56	21.77	3.08	3.15	12.57	12.69	9.86	10.14	12.73	12.60
$Fe(ado)(ClO_4)_2$	mustard yellow	49.1	23.01	22.79	2.51	2.50	13.42	13.76	10.51	10.44	13.58	13.28
$Fe_2(ado)_3(ClO_4)_6 \cdot 4H_2O$	yellow green	50.0	22.77	22.87	2.99	2.75	13.28	12.97	7.06	7.29	13.44	13.79
$Co(ado)(ClO_4)_2 \cdot 2H_2O$	brick red	43.0	21.41	21.84	3.05	2.87	12.48	12.70	10.50	10.88	12.64	12.93
$Ni(ado)(ClO_4)_2 \cdot 2H_2O$	green	51.4	21.41	21.65	3.05	3.16	12.49	12.24	10.47	10.31	12.64	12.38
$Cu(ado)(ClO_4)_2 \cdot 2H_2O$	dark green	69.7	21.23	21.45	3.03	2.76	12.38	12.30	11.23	11.42	12.53	12.21
Zn(ado)(ClO ₄) ₂	off white	77.6	22.60	22.99	2.47	2.33	13.18	13.34	12.30	12.27	13.34	13.58

ado ^a	M = Cr ³⁺	M = Mn ²⁺	$M = Fe^{2+}$	M = Fe ³⁺	M = Co ²⁺	$M = Ni^{2+}$	M = Cu ²⁺	$M = Zn^{2+}$	Band assignment
3460m, 3400ms	3390s,vb b	3440s,b b	3460m, 3440ms, 3400ms 3380s sh	3440s,b b	3430s,b b	3420s b	3420s,b b	3460m, 3440m,] 3400ms 3375s	ν _{OH} (H ₂ O) ν _{OH} (ribose)
3335s, 3160s	3160s,sh	3350s, 3160ms	3340s, 3160s	3345s, 3160s	3340ms, 3150m	3340s, 3175s	3350ms, 3155m	3340s, 3155s	^v NH ²
2920m, 2840mw	2925ms, 2850m	2940m, 2840w	2930m 2840w	2950mw, 2860w	2935m, 2850mw	2925mw, 2845w	2920m, 2835mw	2920m, 2840w	PCH.
1670vs	1689vs	1697m, 1660s	1687m, 1672s	1680s	1707m, 1658s	1705m, 1668s	1702m, 1660s	1675s,b	δNH2
1652ms,sh,	1645s, 1630s,	1642s, 1625s,	1654s, 1646ms,	1650s, 1630s,	1640s, 1600s,	1649s, 1608s,	1646s, 1612s, 15905 15305	1652s, 1643m,	
1537m 1470m	vb, 15928, 1577ms, 1540w	1523m 1509mw.	1540w_1510w_	1508w, 1469w,	1510m, 1565w.	1510m, 1470mw.	12005, 12205, 12125, 14125.	1540w. 1512w.	vC=C + vC=N +
1450m,sh,	1510w, 1470w,	1465w, 1441ms,	1472m, 1450w,	1420m, 1390m,	1445 s, 1408m,	1448s, 1413s,	1385 m, 1335 s,	1475m, 1450m,	δ _{HOH} + ring
1411m, 1387w, 1338ms, 1299s	1417mw, 1390m, 1365w, 1305mw	1405m, 1353ms, 1330ms, 1295mw	1411m, 1390w, 1370w, 1330m, 1299ms	1360w, 1302mw	1340s, 1302m	1400s, 1345s, 1330s, 1303m	1300m,sh	1412m, 1390w, 1370w, 1332m, 1301ms	vibration
1244m, 1225m,	1240w, 1218w,	1250w,b,	1240w, 1218w,	1240vw, 1225w,	1255w, 1220m,	1245w, 1217w,	1207m,b,	1240w, 1220w	-
1203m, 1170w,	1209m, 1180w,	1220w, 1208mw,	1209niw, 1170w,	1212w, 1180ww,	1208m, 1180mw,	1202m, 1170w,	1180w ^b ,	1210m, 1168w,	v_{C-NH_2} + v_{C-N} +
1132w, 1119w, 1098mw 1080w	1135s,sh ² , 1025ve eb	1170vw, 1135s, sh ^b 1030s	1135s,sh ⁻ , 1030ve	1132s,sh ⁻ , 1030c ch	1133s.sh.	1132s, sn , 1030s, sh	1030s.sh.	11235,5n	PNH ³ +
1061m, 1048m, 1028m, 998mw	1002s,sh	sh, 1000mw,b	1005ms	999mw	1010m	1002m,sh	1007m,b	1006ms	VC-O(IIbose)
	1110vs, 1085 vvs h 1050vs	1122vs, 1095 vs h 1060vs	1118vs, 1100 vs h 1065vs	1113vs, 1090 vvs h 1050vs	1115vs, 1085 vs.h. 1057vs	1119vs, 1095 vs.b. 1067vs	1090vs,vb	1120vs, 1100 vs.b. 1060vs	v3(Cl04)
	017 066	0.0001,0,01	0.2001, 0.50	067mm 050mm	06.7m 05.1mu	065m 050mm	0.70m 050m	071 vw 050mw	
900w.890mw.	91.200 w. 9330.90	925w.900vw.	930w, 898mw,	930w, 900vw.	934w, 897vw,	928w, 899vw,	902vw, 840vw,	925w, 897mw,	VC-O(Tibose)
840w, 820m,	838vw, 815mw,	845vw, 817w,	840vw, 813mw,	842vw, 815w,	841vw, 816w,	840vw, 812w,	810w, 790vw,	840vw, 815mw	$\gamma_{\rm MH}^{-1}$
790w, 765w,	792vw, 760mw,	790vw, 755w,	790vw, 757mw,	792vw, 758w,	793vw, 761w,	785vw, 758w,	760w, 710vw,	790ww, 755mw,	v1(ClO4) +
720mw, 700w,	712w,685w,	711w, 697w,b,	710mw, 695w,b,	712w, 688w,	708vw, 686vw,	710vw, 688vw,	685 vw, 645 mw	712mw, 690w,	ring vibration
660m,b, 635ms	d,wmuco	a,wmuca	0,WMUC0	0,000000000000000000000000000000000000	043MW,D	04/IIIW,0	c10	0.0111w,0	
	04 2005, 0 2 9005, 6 2 1 m s	0.201115, 0.201115, 617ms	626ms, 618ms	620ms	616ms, 0221ms, 0	627ms, 614ms	Sille 10	617ms, 0271113, 05	P4(C104)
598m, 570m,	600m, 580m,	595m, 580mw,	595m, 578mw,	597m, 580m,	598m, 580m,	596m, 577m,	601m, 580m,	595m, 580m	
550m,b, 530w,	550m, 530m,	520w, 470w,b,	560mw, 528w,	550m, 460mw,	560m, 520mw,	553m, 530mw,	550m, 530m,	555mw, 530w,	vado (600-
520w, 450w,sh,	465mw, 450mw,	450w, <u>395</u> w,	510w, 470w,	450mw, <u>412</u> w,	475w, 450w,b,	520mw, 475w,	447mw, 415w,	513w, 470w,b	200 cm ⁻¹) ^c
415w, 390w, 350w, 335w	415w, <u>387</u> w, 355w 317w	<u>355</u> w,b, 335w, 798w 770w	<u>405</u> w, <u>360</u> w,b, <u>265</u> w, <u>246</u> mw	<u>390</u> w, <u>352</u> w, <u>370</u> w <u>767</u> w	<u>411</u> w, <u>396</u> w, <u>355</u> w <u>317</u> w	450w, <u>410</u> w, 385w.h. <u>31</u> 5w.	<u>337</u> w, <u>352</u> w,	406w, <u>356</u> w,b, 266w, <u>250</u> mw,	+ $\nu_2({\rm Cl0}_4)$
<u>320</u> w, <u>290</u> w, 267w, <u>250</u> w, 225mw,b	265 w,sh, 247 mw	223m,b	228m,b	245mw, 228m,b	<u>290</u> w, <u>250</u> mw, 232m,b	<u>290</u> w, <u>245</u> mw, 227m,b	<u>250</u> mw, 230m,b	225m,b	
	500m	426w		490m	434w	438w	475m		ν _{M-0} (H ₂ O)
	338w	319w	344w,b	334w,b	342w	344w		338w	₽ _{M-0} (0Cl0 ₃)
	294w,b	251mw, 246mw	303w, 295w	285 w,b	278w, 262w	280w, 265w	314w, 299w	285w, 271w	N-M4

TABLE II. Relevant Infrared Spectral Data for ado and its Metal Perchlorate Adducts (cm⁻¹)

3d Metal Perchlorates Adducts of Adenosine

^aFor references used in making band assignments see text. ^bMasked by stronger bands. ^cBands at $420-240 \text{ cm}^{-1}$ which are underlined, present in the spectrum of ado but absent from that of adenine (which shows maxima at 546, 450, 330, 267 and 225 cm⁻¹ [62]), are probably associated with the ribofuranose residue [53, 66].

+u ¹	$\lambda_{max} (nm)^{a}$	$10^6 \chi_{\rm M}^{\rm cor}$ (cgsu)	$\mu_{\rm eff}$, (μB)
, 3+	<200vvs 242vs 267vs h. 310s sh. 355s. 422s. 447s. 491m. sh. 540mw. sh. 571w. h. 629w. h. 690w. h	5951	3.78
f ⁿ²⁺	<200 vv 245vs 268vs.h 309s.sl. 355s.424s.490w.h	14,112	5.82
c ²⁺	231vs. 245vs.b. 270vs.b. 307s.sh. 360s.vb. 503m. 588mw. 601mw. 702m. 750m.b. 977w.b	11,421	5.24
e3+	217vs 246vs.b 272vs.b. 312s. 353s. 411s. 525w.sh	14,529	5.91
0 ²⁺	<200vvs 244vs, 266vs.b, 311s,sh, 355s,b, 472s,sh, 496s, 522s,sh, 620w,b, 715w,vb, 833w,b,	8804	4.60
1i ²⁺	917w.b, 1050w.vb, 1260w.b, 1850vw.b 210vs.b. 240vs. 271vs b, 308s. 360s. 385s. 421ms. 445ms.sh. 497m.sh. 590mw.b, 671mw.b	3727	2.99
2+	740mw,b, 975mw,b, 1260w,b ~2000.000 24300 272000 b 3550 415000b 572000b 6180000 b 77000b	1452	1.87
n ²⁺	2200455 24545 2128545, 5075541, 55555, 4155 541, 57285, 4155 541, 51246, 541, 51244, 542	Diamagnetic	

108

C. M. Mikulski et al.

for 5-10 days, as previously described in detail [27]. Adducts of the following stoicheiometries were isolated (Table I): M₂(ado)₃(ClO₄)₆·4II₂O $(M = Cr, Fe), M(ado)(ClO_4)_2 \cdot 2H_2O$ (M = Mn, Co,Ni, Cu) and M(ado)(ClO₄)₂ (M = Fe, Zn) [27]. With the exception of the Mn²⁺ complex, which was obtained in relatively low yield (16.8%), the synthetic method employed produced adducts in satisfactory yields (43-78%). The complexes are either insoluble or very sparingly soluble in organic solvents. Infrared spectra (Table II) were recorded on KBr discs (4000-500 cm⁻¹) and on Nujol mulls between high-density polyethylene windows (700- 200 cm^{-1}), in conjunction with a Perkin-Elmer 621 spectrophotometer. Solid-state (Nujol mull) electronic spectra and magnetic susceptibility measurements at 298 K (Table III) were obtained by methods described elsewhere [57].

Discussion

Infrared Evidence

The IR spectrum of ado obtained during this work (Table II) agrees with published complete or partial spectral data [16, 22, 24, 26, 51, 58]. Band assignments were based on analogous IR studies of adenine [59-62], adenosine 5'-monophosphate [63] and various nucleosides [64-66], as well as partial assignments made for ado [16, 22, 24, 26]. The ν_{OH} of the ribose fragment appears as a doublet at 3460, 3400 cm⁻¹ in free ado [64, 65], while in the spectra of the two anhydrous complexes (Fe²⁺, Zn²⁺) four bands appear in the same region at 3460, 3440, 3400 and 3380-3375 cm⁻¹; these v_{OH} splittings, which involve appearance of one component of each of the split bands at 20-25 cm⁻¹ lower frequency, could be due to weak coordinative interaction between one of the ribose hydroxyl oxygens and the metal ion, as well as to other reasons (Hbonding interactions, etc.). Possible additional v_{OH} shifts beyond 3350 cm^{-1} can not be detected, owing to the strong $\nu_{\rm NH_2}$ absorptions at 3335 and 3160 cm⁻¹. Other regions of significant absorption due to the ribofuranose residue are at 1200-800 cm⁻¹ (v_{C-O} bands) [24, 26, 51, 63-65, 67, 68]. Most notable ν_{C-O} modes in these regions correspond to maxima at 1130-1090 and 900-870 cm⁻¹ [26, 51, 63-65]. In the spectra of the new complexes, the former of these regions is completely masked by the strong $\nu_3(ClO_4)$ bands [69, 70], but in the latter it may be significant that the absorption at *ca*. 900 cm⁻¹ is considerably more intense for the Fe^{2+} and Zn^{2+} adducts, relative to the hydrated new complexes. Several bands of ado at 450-200 cm⁻¹ do not have counterparts in the corresponding adenine spectrum [61, 62] and may be associated with the ribofuranose ring [66]. It was previously

suggested that the stronger perturbation observed for some of the ribose bands in this region in the spectra of anhydrous rather than hydrated nucleoside metal complexes might be due to binding of ribose oxygens to the metal ion in the water-free complexes [53]. The spectra of the new Fe^{2+} and Zn^{2+} complexes, unlike the spectra of the remaining adducts, are absorption-free at around 390 and 320 cm⁻¹, where two of the bands probably due to ribose occur in ado. It is, therefore, not unlikely that the two anhydrous new complexes involve weak bond formation between the M^{2+} ion and the O(2') or O(3') ribose oxygen, in addition to the stronger bonds of the metal ion with the N(1) and N(7) nitrogens (vide infra). No evidence of the presence of v_{M-O} (ribose) bands was found. These bands should occur at 430-320 cm⁻¹ in divalent 3d metal complexes [26, 71-73], and, if present in the spectra under discussion, they would be probably weaker than and masked by the ligand and $\nu_{M-O}(OClO_3)$ absorptions in this region. It is also noteworthy that the ado ribose band at 415 cm^{-1} undergoes larger shifts in the spectra of the anhydrous new complexes.

The δ_{NH_2} band of ado at 1670 cm⁻¹ does in no case exhibit substantial shifts toward lower wavenumbers upon formation of the new adducts, so that it may be concluded that no coordination occurs at the exocyclic N(6) nitrogen [59-63]. In most cases this band is split into two components (1707--1687 and 1672–1658 cm^{-1}), while in other cases it undergoes small positive frequency shifts (1689--1675 cm⁻¹). Occurrence of this δ_{NH_2} band at higher frequencies relative to the uncomplexed nucleoside has been observed upon protonation of adenine ring nitrogens [74, 75] and upon H-bond formation between the NH₂ hydrogens and ligands present in the coordination sphere of a metal ion complexed to the nucleoside (e.g., chloro ligands) [59]. Since ado remains neutral in the new complexes, the most likely cause of the δ_{NH_2} positive frequency shifts is H-bonding between NH_2 and perchlorato or aqua ligands. Several $\nu_{C=C}$, $\nu_{C=N}$ and ring vibrations of ado at 1650-1300 cm⁻¹ undergo significant shifts and splittings in the spectra of the adducts. For example, the 1470 cm⁻¹ ligand band appears weakened or even disappears in the spectra of some of the M²⁺ complexes (Mn, Co, Ni, Cu) and is replaced by a doublet of strong bands at 1530-1523 and 1448-1441 cm⁻¹; the spectra of the remaining complexes show also shifts and splittings of ado bands in the region, but in a less dramatic fashion. The preceding features are consistent with participation of adenine ring nitrogens in coordination [59-63]. The tentatively assigned ν_{M-N} bands favor coordination number six for M = Cr³⁺, Fe³⁺ [61, 75], five for M = Mn^{2+} , Co^{2+} , Ni^{2+} [62, 76] and four for $M = Fe^{2+}$, Cu^{2+}, Zn^{2+} [76, 77].

The hydrated complexes generally exhibit a strong $\nu_{OH}(H_2O)$ band at 3440-3390 cm⁻¹ [78], which masks the ν_{OH} (ribose) absorptions com-pletely and the 3335 cm⁻¹ ν_{NH_2} band partially. The δ_{H-O-H} mode of coordinated water appears at *ca*. 1630 cm⁻¹ [78], overlapping with the $\nu_{C=C} + \nu_{C=N}$ absorptions in this region. The Cu²⁺ complex exhibits clearly single v_3 and v_4 (ClO₄) bands at 1090 and 618 cm⁻¹, respectively, and contains, therefore, exclusively ionic ClO_4^- [69, 70]. The rest of the new complexes show triply split ν_3 and $\nu_4(ClO_4)$ bands and IR-active ν_1 and $\nu_2(ClO_4)$ absorptions (at 934–925 and 475–460 cm^{-1} , respectively). In all these cases both ionic ClO₄ and unidentate coordinated -OClO₃ ligands are present [69, 70]. It should be noted that the presence of ionic ClO_4^{-} in the latter complexes is established beyond any doubt, by the characteristic very strong and broad v_3 band at 1100-1085 cm⁻¹, so that that the possibility that the ν_3 and $\nu_4(ClO_4)$ splittings into three components arise from the exclusive presence of bidentate $=O_2ClO_2$ ligands can be ruled out [69, 70]. Tentative ν_{M-O} (aqua) and ν_{M-O} (perchlorato) band assignments are in support of the coordination numbers suggested by the location of the $\nu_{\rm M-N}$ bands [61, 62, 75-80].

Electronic Spectra and Magnetic Moments

The solid-state (Nujol mull) UV spectrum of ado (Table III) is in agreement with the published aqueous solution spectrum [81]. The main $\pi \rightarrow \pi^*$ transition bands of the ligand at 230 and 260 nm undergo shifts toward lower energies upon metal complex formation. The band appearing at 307-312 nm in the spectra of the new complexes is due to the $n \rightarrow \pi^*$ transition of the ligand [82]. The new paramagnetic metal complexes are generally characterized by strong metal-to-ligand charge-transfer bands [83], originating in the UV and trailing off well into the visible. The d-d transition spectrum of the Cr³⁺ complex is compatible with a low symmetry hexacoordinated configuration [75, 84]: ${}^{4}A_{2g}(F) \rightarrow$ ${}^{4}T_{1g}(F)$ 422, 447, 491; $\rightarrow {}^{4}T_{2g}(F)$ 540, 571, 629, 690 nm (approximate $Dq = 1646 \text{ cm}^{-1}$). The Co^{2+} and Ni²⁺ complexes exhibit multiple d-d band maxima at 472-1850 and 385-1260 nm, respectively, as would be expected for pentacoordinated compounds of these metal ions [84-87]. The occurrence of the main d-d transition maximum at 770 nm in the spectrum of the Cu²⁺ complex is consistent with a distorted tetrahedral symmetry [16, 77, 88-90], as is also the extensive splitting of the d-d transition in the spectrum of the Fe²⁺ complex [91, 92]. The ambient temperature magnetic moments of the new complexes are generally normal for high-spin $3d^3-3d^8$ compounds or the $3d^9$ configuration [93]. This is not incompatible with linear polymeric structures, involving single ado bridges between

adjacent metal ions. In fact, Co^{2+} , Ni^{2+} and Cu^{2+} purine complexes of this type were found magnetically normal at room temperature, showing evidence of magnetic exchange at lower temperatures (below 110 K) [94]; whereas in the case of [Fe(uridine)- Cl_2]_x, for which a cross-linked polymeric structure, involving a linear double-bridged $-(-\text{Fe}-\text{Cl}_2-)-_x$ backbone and axial bridging uridine ligands, coordinated through the uracil oxygen at C(4) and one ribose hydroxyl oxygen and connecting adjacent linear polymeric units, was proposed, a μ_{eff} value of 5.24 µB at 298 K, which decreases to 1.55 µB at 1.73 K, was reported [54].

Likely Structures

The new complexes are most probably linear polymeric species, involving single bridges of N(1), N(7)bonded ado between adjacent metal ions, in view of their poor solubility in organic media and the pronounced tendency of purines to act as bridging ligands [33, 38-40, 75-77, 94]. The most likely structural types for the Cr³⁺ and Fe³⁺ complexes are II and III ($X = -OClO_3$ ligand); the former of these types seems more probable, since it does not involve any double ado bridges between metal ions, which would lead to increased magnetic exchange interactions. The terminal ado ligand in structure II would be expected to bind through N(7) [37]. It should be also noted that the stoicheiometry of the M³⁺ complexes (3:2 ado to M³⁺) further supports a polymeric over a monomeric structural type. As regards the hydrated M^{2+} complexes, structure IV would be most likely for the Mn^{2+} , Co^{2+} and Ni^{2+} adducts, and an analogous structure (V) without coordinated perchlorate for the Cu²⁺ complex. Both these structures involve the familiar linear chainlike polymeric $-(-M-ado-)-_n$ backbone [75-77, 94, 95], as is also structural type II. With respect to the anhydrous Fe^{2+} and Zn^{2+} complexes, coordination number four can be attained only if the ado acts as tridentate bridging or if the perchlorate groups are either exclusively unidentate coordinated or one is ionic and the other is biden-

tate chelating or bridging. Since the IR spectra of these complexes (ν_3 (ClO₄) bands; *vide supra*) are not in favor of the latter two possibilities and provide some indications that in these complexes coordination of ado through ribose hydroxyl oxygens may be occurring, structural type VI can be considered as most consistent with the overall evidence available (L-OH: tridentate ado, bonding through N(1), N(7) and the O(2') or O(3') ribose oxygen) [53, 54]. A cross-linked structure of type VI would not be expected to result in a subnormal room temperature magnetic moment for the Fe²⁺ complex [54].

References

- 1 C. M. Mikulski, R. Minutella, N. DeFranco and N. M. Karayannis, 1984 Int. Chem. Congress of Pacific Basin Socs. (PAC CHEM '84), Honolulu, Hawai, Dec. 16-21, 1984; Abstr. No. 07P68.
- 2 R. W. Gellert and R. Bau, in H. Sigel (ed.), 'Metal Ions in Biological Systems', Vol. 8, Marcel Dekker, New York, 1979, p. 1-55.
- 3 R. B. Martin and Y. I. Mariam, in H. Sigel (ed.), 'Metal Ions in Biological Systems', Vol. 8, Marcel Dekker, New York, 1979, p. 57-124.
- 4 N. Hadjiliadis and T. Theophanides, Inorg. Chim. Acta, 16, 67 (1975).
- 5 K. P. Beaumont, C. A. McAuliffe and M. E. Friedman, Inorg. Chim. Acta, 25, 241 (1977).
- 6 A. I. Stetsenko and E. S. Dmitriyeva, Koord. Khim., 3, 1240 (1977); E. I. Stetsenko, E. S. Dmitriyeva and K. I. Yakovlev, J. Clin. Hematol. Oncol., 7, 522 (1977); E. I. Stetsenko, I. I. Volchenskova, E. S. Dmitriyeva, N. N. Maidanevich and K. B. Yatsimirskii, Koord. Khim., 6, 1455 (1980).
- 7 Pi-Chang Kong and T. Theophanides, *Inorg. Chem.*, 13, 1167, 1981 (1974).
- 8 N. Hadjiliadis and G. Pneumatikakis, J. Chem. Soc., Dalton Trans., 1691 (1978); Inorg. Chim. Acta, 46, 255 (1980).
- 9 G. Pneumatikakis, Inorg. Chim. Acta, 46, 243 (1980); 66, 181 (1982); 80, 89 (1983); Polyhedron 3, 9 (1984).
- 10 B. T. Khan, G. N. Goud and S. V. Kumari, *Inorg. Chim. Acta*, 80, 145 (1983).
- 11 U. K. Häring and R. B. Martin, *Inorg. Chim. Acta, 80*, 1 (1983).
- 12 Sook-Hui Kim and R. B. Martin, *Inorg. Chim. Acta*, 91, 11 (1984).
- 13 N. Farrell, Chem. Commun., 1014 (1980); J. Inorg. Biochem., 14, 26 (1981).
- 14 Pi-Chang Kong, D. Iyamuremye and F. D. Rochon, Bioinorg. Chem., 6, 83 (1976).
- 15 B. T. Khan, M. R. Somayajulu and M. M. Taqui Khan, J. Inorg. Nucl. Chem., 40, 1271 (1978).
- 16 T. Beringhelli, M. Freni, F. Morazzoni, P. Romiti and R. Servida, Spectrochim. Acta, Part A, 37, 763 (1981).
- 17 G. Pneumatikakis and N. Hadjiliadis, J. Chem. Soc., Dalton Trans., 596 (1979).
- 18 W. Beck and N. Kottmair, Chem. Ber., 109, 970 (1976).
- 19 M. M. Singh, Y. Rosopulos and W. Beck, *Chem. Ber.*, 116, 1364 (1983).
- 20 D. W. Abbott and C. Woods, *Inorg. Chem.*, 22, 597 (1983).
- 21 S. Mansy, T. E. Wood, J. C. Sprowles and R. S. Tobias, J. Am. Chem. Soc., 96, 1762 (1974); S. Mansy and R. S. Tobias, J. Am. Chem. Soc., 96, 6874 (1974).

3d Metal Perchlorates Adducts of Adenosine

- 22 P. Piperaki, N. Katsaros and D. Katakis, *Inorg. Chim.* Acta, 67, 37 (1982).
- 23 J. F. Conn, J. J. Kim, F. L. Suddath, P. Blattmann and A. Rich, J. Am. Chem. Soc., 96, 7152 (1974).
- 24 L. Pellerito, G. Ruisi, M. T. LoGiudice, J. D. Donaldson and S. M. Grimes, *Inorg. Chim. Acta*, 58, 21 (1982).
- 25 C. J. Cardin and A. Roy, *Inorg. Chim. Acta*, 107, 57 (1985).
- 26 L. Pellerito, G. Ruisi, R. Barbieri and M. T. LoGiudice, Inorg. Chim. Acta, 21, L33 (1977); G. Ruisi, M. T. Lo-Giudice and L. Pellerito, Inorg. Chim. Acta, 93, 161 (1984).
- 27 C. M. Mikulski, R. Minutella, N. DeFranco and N. M. Karayannis, *Inorg. Chim. Acta*, 106, L33 (1985).
- 28 J. Brigando, D. Colaitis and M. Morel, Bull. Soc. Chim. Fr., 3449 (1969).
- 29 L. G. Marzilli, Prog. Inorg. Chem., 23, 255 (1977).
- 30 H. Reinert and R. Weiss, Hoppe Seyler's Z. Physiol. Chem., 350, 1321 (1969).
- 31 K. Maskos, Acta Biochim. Pol., 25, 311 (1978).
- 32 S. V. Deshpande, R. K. Sharma and T. S. Srivastava, Inorg. Chim. Acta, 78, 13 (1983).
- 33 D. J. Hodgson, Prog. Inorg. Chem., 23, 211 (1977).
- 34 J. Arpalahti and E. Ottoila, Inorg. Chim. Acta, 107, 105 (1985).
- 35 J. Arpalahti and H. Lönnberg, Inorg. Chim. Acta, 78, 63 (1983); 80, 25 (1983); 107, 197 (1985).
- 36 L. G. Marzilli, B. deCastro, J. P. Caradonna, R. C. Stewart and C. P. Van Vuuren, J. Am. Chem. Soc., 102, 916 (1980).
- 37 T. Sorrell, L. A. Epps, T. J. Kistenmacher and L. G. Marzilli, J. Am. Chem. Soc., 99, 2173 (1977).
- 38 P. de Meester, D. M. L. Goodgame, A. C. Skapski and Z. Warnke, Biochim. Biophys. Acta, 324, 301 (1973).
- 39 M. J. McCall and M. R. Taylor, Acta Crystallogr., Sect. B, 32, 1687 (1976).
- 40 M. D. Poojary and H. Manohar, Inorg. Chim. Acta, 93, 153 (1984).
- 41 J. Hubert and A. L. Beauchamp, Can. J. Chem., 58, 1439 (1980).
- 42 E. Sletten, T. Marthinsen and J. Sletten, Inorg. Chim. Acta, 93, 37 (1984).
- 43 S. T. Rao and M. Sundaralingam, J. Am. Chem. Soc., 91, 1210 (1969).
- 44 M. A. Viswamitra, M. V. Hosur, Z. Shakked and O. Kennard, Nature (London), 262, 234 (1976).
- 45 E. Shefter and K. N. Trueblood, Acta Crystallogr., 18, 1067 (1965).
- 46 D. M. L. Goodgame, I. Jeeves, C. D. Reynolds and A. C. Skapski, Nucleic Acids Res., 2, 1375 (1975).
- 47 Y. H. Chao and D. R. Kearns, J. Am. Chem. Soc., 99, 6425 (1977).
- M. Gabriel, D. Larcher, C. Thirion, J. Toreilles and A. Crastes de Paulet, *Inorg. Chim. Acta, 24*, 187 (1977);
 M. Gabriel, D. Larcher, J. C. Boubel, A. A. Peguy and J. Toreilles, *Inorg. Chim. Acta, 26*, 77 (1978).
- 49 S. Suzuki, W. Mori and A. Nakahara, *Bioinorg. Chem.*, 3, 281 (1974).
- 50 I. Sovago and R. B. Martin, Inorg. Chim. Acta, 46, 91 (1980).
- 51 H. C. Nelson and J. F. Villa, *Inorg. Chem.*, 18, 1725 (1979); J. Inorg. Nucl. Chem., 41, 1643 (1979).
- 52 E. Kupce and I. Sekacis, *Khim. Prir. Soedin.*, 565 (1979). 53 M. Goodgame and K. W. Johns, *J. Chem. Soc.*, *Dalton*
- Trans., 1294 (1978).
- 54 C. Nicolini and W. M. Reiff, Polyhedron, 2, 424 (1983).
- 55 D. Wagner, J. P. H. Verheyden and J. G. Moffatt, J. Org. Chem., 39, 24 (1974).
- 56 W. S. Sheldrick, Acta Crystallogr., Sect. B, 37, 1820 (1981).

- 57 N. M. Karayannis, L. L. Pytlewski and M. M. Labes, Inorg. Chim. Acta, 8, 91 (1974).
- 58 C. L. Angeil, J. Chem. Soc., 504 (1961).
- 59 S. Shirotake, Chem. Pharm. Bull., 28, 1673 (1980).
- 60 R. Savoie, J.-J. Jutier, L. Prizant and A. L. Beauchamp, Spectrochim. Acta, Part A, 38, 561 (1982).
- 61 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, J. Inorg. Nucl. Chem., 43, 2771 (1981).
- 62 C. M. Mikuslki, S. Cocco, N. DeFranco, T. Moore and N. M. Karayannis, *Inorg. Chim. Acta*, 106, 89 (1985).
- 63 H. A. Tajmir-Riahi and T. Theophanides, *Inorg. Chim.* Acta, 80, 183 (1983).
- 64 J. F. Baret, C. P. Carbone and J. Sturm, J. Raman Spectrosc., 8, 291 (1979).
- 65 T. Theophanides, Can. J. Spectrosc., 26, 165 (1981). 66 C. P. Beetz, Jr. and G. Ascarelli, Spectrochim. Acta,
- 66 C. P. Beetz, Jr. and G. Ascarelli, Spectrochim. Acta, Part A, 36, 525 (1980).
- 67 L. P. Kuhn, Anal. Chem. 22, 276 (1950).
- 68 T. Shimanouchi, M. Tsuboi and Y. Kyogoku, Adv. Chem. Phys., 7, 435 (1964).
- 69 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 3091 (1961); B. J. Hathaway, D. G. Holah and M. Hudson, J. Chem. Soc., 4586 (1963).
- 70 A. E. Wickenden and R. A. Krause, *Inorg. Chem.*, 4, 404 (1965); S. F. Pavkovic and D. W. Meek, *Inorg. Chem.*, 4, 1091 (1965); M. E. Farago, J. M. James and V. C. G. Trew, *J. Chem. Soc.*, *Part A*, 820 (1967).
- 71 S. H. Hunter, V. M. Langford, G. A. Rodley and C. J. Wilkins, J. Chem. Soc., Part A, 305 (1968); G. B. Deacon and J. H. S. Green, Spectrochim. Acta, Part A, 24, 845 (1968).
- 72 D. Knetsch, Ph.D. Thesis, Leiden University, Netherlands, 1976; C. M. Mikulski, L. S. Gelfand, L. L. Pytlewski, J. S. Skryantz and N. M. Karayannis, *Inorg. Chim.* Acta, 21, 9 (1977).
- 73 R. W. Adams, R. L. Martin and G. Winter, Aust. J. Chem., 20, 773 (1967); A. G. Kruger and G. Winter, Aust. J. Chem., 23, 1 (1970).
- 74 N. Katsaros, E. Vrachnou-Astra and J. Konstantatos, J. Inorg. Biochem., 16, 227 (1982).
- 75 C. M. Mikulski, L. Mattucci, Y. Smith, T. B. Tran and N. M. Karayannis, *Inorg. Chim. Acta*, 80, 127 (1983).
- 76 A. N. Speca, C. M. Mikulski, F. J. laconianni, L. L. Pytlewski and N. M. Karayannis, *Inorg. Chim. Acta*, 46, 235 (1980).
- 77 C. M. Mikulski, T. B. Tran, L. Mattucci and N. M. Karayannis, *Inorg. Chim. Acta*, 78, 211, 269 (1983).
- 78 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964).
- 79 J. R. Ferraro and A. Walker, J. Chem. Phys., 42, 1273, 1278 (1965).
- 80 A. N. Speca, L. S. Gelfand, L. L. Pytlewski, C. Owens and N. M. Karayannis, *Inorg. Chem.*, 15, 1493 (1976).
- 81 D. Colaitis, J. Brigando and M. Morel, Bull. Soc. Chim. Fr., 3453 (1969).
- 82 L. B. Clark and I. Tinoco, Jr., J. Am. Chem. Soc., 87, 11 (1965).
- 83 A. B. P. Lever, J. Lewis and R. S. Nyholm, J. Chem. Soc., 1235 (1962); 3156, 5042 (1963); 1187, 4761 (1964).
- 84 W. Byers, A. B. P. Lever and R. V. Parish, *Inorg. Chem.*, 7, 1835 (1968).
- 85 I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava, Inorg. Chem., 14, 1639 (1975).
- 86 M. Ciampolini and N. Nardi, *Inorg. Chem.*, 5, 41, 1150 (1966); 6, 445 (1967).
- 87 M. Ciampolini and G. P. Speroni, *Inorg. Chem.*, 5, 45 (1966).

- 88 N. B. Behrens, D. M. L. Goodgame and Z. Warnke, *Inorg. Chim. Acta*, 31, 257 (1978).
- 89 M. A. Guichelaar and J. Reedijk, Recl. Trav. Chim. Pays-Bas, 97, 295 (1978).
- 90 C. M. Mikulski, L. Mattucci, L. Weiss and N. M. Karayannis, *Inorg. Chim. Acta.* 107, 81 (1985).
- 91 D. H. Gerlach and R. H. Holm, Inorg. Chem., 8, 2292 (1969).
- 92 N. M. Karayannis and C. M. Mikulski, *Inorg. Nucl. Chem. Lett.*, 17, 261 (1981).
- 93 B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 6, 37 (1964).
- 94 A. N. Speca, C. M. Mikulski, F. J. Iaconianni, L. L. Pytlewski and N. M. Karayannis, *Inorg. Chem.*, 19, 3491 (1980).
- 95 P. I. Vestues and E. Sletten, *Inorg. Chim. Acta*, 52, 269 (1981).